Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(6): 1429-1444, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807055

RESUMO

Nitro-aromatic compounds have a deleterious effect on the environment and they are extremely explosive. Therefore, societal concern about exposure to nitro-aromatic compounds encourages researchers to develop selective and sensitive detection platforms for nitro-aromatic compounds in recent years. In this paper, a new 100% water-soluble cyclotriphosphazene-based bridged naphthalene material (4) was prepared as a small molecule fluorescent sensor for ultra-selective detection of nitro-aromatic compounds. The chemical structure of 4 was extensively characterized by mass spectrometry and nuclear magnetic resonance spectroscopies (31P, 13C, 1H). The photo-physical properties of the newly developed sensing system were investigated by steady-state fluorescence and UV-Vis absorption spectroscopies. The fluorescence sensor behaviors were extensively evaluated after treatment with the most commonly used metal cations, anions, competitive aromatic compounds, saccharides, and organic acids. The developed fluorescent sensing system (4) demonstrated ultra-selective fluorescence "turn-off" signal change toward nitro-aromatic compounds while other tested competitive species caused negligible changes. To evaluate selectivity, time-resolved, steady-state 3D-fluorescence and UV-Vis absorption spectroscopies were used in fully aqueous media. Moreover, theoretical calculations (density functional theory and time-dependent density functional theory) were applied and discussed to identify fluorescence sensing mechanisms toward nitroaromatic compounds for the presented sensing system.


Assuntos
Corantes Fluorescentes , Água , Corantes Fluorescentes/química , Cátions , Metais
2.
Bioelectrochemistry ; 149: 108324, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401962

RESUMO

A new enzymatic electrochemical biosensor has been developed with the PANI/Nafion composite system containing ferrite nanoparticles with four different transition metals. The ferrite nanoparticles containing copper, cobalt, nickel, and zinc metals were synthesized by the co-precipitation method and their surfaces were modified with tetraethoxysilane and (3-aminopropyl) triethoxysilane to obtain -NH2 function in order to develop the purposed sensing system. The modified and unmodified ferrite nanoparticles were characterized by physically, chemically, and morphologically. Ferrite nanoparticles with suitable for enzyme immobilization were integrated on the GCE surface and covered with PANI/Nafion. According toelectrochemical measurements, it was determined that copper ferrite nanoparticles, which have the lowest bandgap value, significantly increased the biosensor performance. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to monitor biosensor production and evaluate its performance. A detection limit of 0.17 µM and a wide linear range of 0.5-45.0 µM were obtained for the urea detection with the DPV method with the sensing system (Nf/PANI/CuF/Urs). The biosensor has been successfully applied to soil and milk samples with high accuracy. In addition, it has been determined that the proposed method has good reproducibility, selectivity, and stability.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Urease , Ureia , Cobre , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Nanopartículas/química , Zinco , Técnicas Eletroquímicas/métodos , Eletrodos
3.
Food Chem ; 403: 134130, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162270

RESUMO

Phenolic compounds that are naturally found in food samples are not only an important part of the human diet but also useful bioactive substances for health. Among these, para-coumaric acid (p-CA) has antibacterial and antioxidant properties and is used in many industrial processes. In this study, the novel MAX-phase material, Nb4AlC3, was successfully prepared and characterized in detail with various spectroscopic, microscopic and thermal techniques. The sensor performance of Nb4AlC3 modified glassy carbon electrode (Nb4AlC3@GCE) was evaluated and analytical parameters were calculated. Experimental conditions such as pH and amount of modifier were optimized with differential pulse voltammetry (DPV) measurements. The real samples analyses of lemon, apple and pomegranate were applied for determination of p-CA with Nb4AlC3@GCE sensing system under the optimized conditions. The accuracy was evaluated by spike/recovery and high-performance liquid chromatography analysis, which accounted for high accuracy of the Nb4AlC3@GCE sensing system. The limit of detection, limit of quantification, linear working range and relative standard deviation (%) of the Nb4AlC3@GCE sensing system were determined as 0.28 and 0.85 µmol/L, 0.8-80.0 µmol/L, 3.17 %, respectively. The results showed that the proposed sensing system has the high precision at lower concentration of p-CA.


Assuntos
Técnicas Eletroquímicas , Nióbio , Humanos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos
4.
Turk J Chem ; 47(5): 1296-1306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173741

RESUMO

A new water-soluble template of double-bridged naphthalene diimide appended cyclotriphosphazene was prepared, and its photophysical and sensor behaviors were evaluated. The characterization of novel double-bridged naphthalene diimide appended cyclotriphosphazene (6) was carried out by NMR (1H, 13C, 31P) and mass spectroscopies. The photophysical behaviors of compound 6 were evaluated by UV-Vis absorption and fluorescence spectroscopies in various solvent systems and different concentrations. As an application for usability of the obtained water-soluble template in different applications, the fluorescence sensor property of compound 6 was investigated in the presence of many different competing species (organic acids, saccharides, nitroaromatic compounds, anions, and metal cations). The results obtained showed that compound 6 had selectivity against only the nitroaromatic species among the competing species tested.

5.
Biosens Bioelectron ; 216: 114612, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952434

RESUMO

Theranostic, which integrates the diagnosis and tumor treatment in tandem, is an emerging strategy in cancer treatment. Here, we report a novel and unique theranostic nanoparticle, HBCP NP, based on hexa-BODIPY cyclophosphazene (HBCP). Due to the unique bulky molecular structure of HBCP, this nanoparticle can simultaneously perform near-infrared (NIR) fluorescence imaging and photoacoustic imaging (PAI). Interestingly, since reactive oxygen species (ROS) generation of HBCP NPs is completely inhibited, 'safe' fluorescence imaging is possible without the risk of cell damage even under laser irradiation. Finally, NIR fluorescence imaging and PAI in 4T1 tumor-bearing mice demonstrated selective accumulation of HBCP NPs at tumor sites. In addition, HBCP NPs exhibited excellent photothermal effects under high-power laser irradiation, achieving effective tumor growth inhibition.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animais , Compostos de Boro , Linhagem Celular Tumoral , Hexosaminidase A , Camundongos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imagem Óptica , Técnicas Fotoacústicas/métodos , Espécies Reativas de Oxigênio , Nanomedicina Teranóstica/métodos
6.
Food Chem Toxicol ; 164: 113016, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430329

RESUMO

MAX phases have attracted great attention due to unique features such as thermal and electrical conductivity, easy fabrication, heat resistant, and lightweight. In this study, an easy and green method was employed to successfully develop a Ti3Al0.5Cu0.5C2 MAX phase structure, and a Ti3Al0.5Cu0.5C2 based glassy carbon electrode (GCE) was applied for the electrochemical determination of rutin antioxidants in mandarin and kiwi samples. The developed Ti3Al0.5Cu0.5C2 MAX phase was characterized by different techniques such as X-ray photoelectron spectroscopy (XPS), thermogravimetry and differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to obtain information on the structural and morphological properties. Electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed for the determination of rutin using Ti3Al0.5Cu0.5C2/GCE. The GCE modified with Ti3Al0.5Cu0.5C2 demonstrated amplified electrochemical response (ca. 4.25 times) in comparison to the bare GCE towards rutin, and exhibited ultra-sensitivity and selectivity in the presence of other interfering antioxidants. Under the optimum conditions, good linearity in the range of 0.02-50.00 µmol L-1 was obtained for rutin analysis by the Ti3Al0.5Cu0.5C2-based sensor with a limit of detection (LOD, 3σ/K) as low as 0.015 µmol L-1. The fabricated Ti3Al0.5Cu0.5C2 MAX phase was applied to determine trace levels of rutin in mandarin and kiwi samples with validation by high-performance liquid chromatography (HPLC), thus highlighting its potential for the electrochemical determination of small molecules in the agricultural field.


Assuntos
Antioxidantes , Rutina , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Rutina/análise , Titânio
7.
Environ Res ; 212(Pt A): 113071, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35346651

RESUMO

Bisphenol A (BPA) is an industrially preferred material for the production of plastic and polycarbonate as well as a used material for the interior of food and beverage cans. In this study, synthesis and electrochemical sensor application of Mo2Ti2AlC3/MWCNT (multi-walled carbon nanotube) nanocomposite for BPA sensing was evaluated. Mo2Ti2AlC3 was used as MAX phase material in the design of the sensor, and MWCNT was preferred to increase conductivity and sensitivity. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to determine Mo2Ti2AlC3/MWCNT nanocomposite's electrochemical sensor performances which had LOD of 2.7 nM and LOQ of 8.91 nM in the linear working range of 0.01-8.50 µM calculated from DPV. The composite showed a single oxidation step against BPA which is diffusion-controlled and irreversible. The sensor was successfully applied for the determination of BPA in milk pack, plastic bottle, and can with recoveries ranging from 95.67% to 100.60%. In addition, sensor performance was examined through selectivity, repeatability, and reusability studies. HPLC as a standard determination method was carried out for accuracy of the voltammetric determination method in the real samples. The developed sensor could be applied to different areas from industry quality control to clinical analysis for the detection of BPA.


Assuntos
Disruptores Endócrinos , Nanotubos de Carbono , Compostos Benzidrílicos , Técnicas Eletroquímicas/métodos , Eletrodos , Disruptores Endócrinos/análise , Limite de Detecção , Fenóis , Plásticos , Titânio
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120017, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34098476

RESUMO

A novel pyrene modified anthracene dipodal sensor was prepared by a simple synthetic method for the sensitive determination of iron ions in real samples. The chemical characterization analyses including nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were carried out to characterize the target fluorescent sensor. Photophysical and electrochemical behaviors of the sensor were studied by the absorption, excitation-emission matrix analysis, steady-state fluorescence, three-dimensional fluorescence, and cyclic and square wave voltammetry, respectively. The fluorescent sensor properties were evaluated via Ultraviolet-visible and fluorescence spectroscopies. According to obtained results, the fluorescence signal of the sensor was selectively quenched with interaction with Fe3+ ions. The spectrofluorimetric determination of iron, in real water and medicine samples were successfully carried out under optimized experimental conditions. A detection limit and linear working range were calculated as 0.265 µM and 0.275-55.000 µM, respectively which demonstrated the ability of the simple and sensitive sensor for slight amounts of iron. The obtained detection limit for iron determination with the presented novel fluorescent sensor was less than nearly 20 times the tolerance limit (5.40 µM) in drinking water that was determined by the United States Environmental Protection Agency. The accuracy of the newly developed method was evaluated by Inductively coupled plasma optical emission spectroscopy and spike/recovery test which demonstrated that the developed fluorescent sensor has high accuracy for fast, easy and accessible determination of iron at 95% confidence level.


Assuntos
Ferro , Pirenos , Antracenos , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Fluorescência
9.
Dalton Trans ; 50(19): 6437-6443, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33890599

RESUMO

The synthesis with full structural characterization including elemental analysis and 1H, 13C, 11B and 19F NMR, FT-IR and MALDI-TOF spectral data, along with the florescence sensing behavior of a new resorcin[4]arene cavitand 3 bearing multiple BODIPY sites achieved by the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) is being reported. The spatial orientation of multiple BODIPY-1,2,3-triazole arms based on the macrocyclic rigid core is of great interest since the resulting structure has been utilized as a fluorescent chemosensor for numerous metal cations. In particular, a remarkable decrease in the fluorescence emission towards Cu(ii) ions, i.e., "turn-off" response, has been obtained giving rise to an optical sensor for the detection of triazole fungicides, namely tebuconazole, triadimenol, triadimefon, i.e. "turn-on" response. Such a molecular system, hence, can be feasibly applied as a dual optical sensor, i.e. "a turn-on-off-on" system, for dangerous contaminants such as heavy metals and pesticides.

10.
Biosens Bioelectron ; 174: 112819, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33246678

RESUMO

2,3,9,10,16,17,23,24-Octakis (4-methyl-2,6-bis((prop-2-yn-1-yloxy)methyl)phenoxy) phthalocyaninato zinc(II) (Pc) bearing sixteen terminal ethynyl groups was synthesized and attached to SWCNT (Single-walled carbon nanotube) covalently to obtain three dimensional porous hybrid material (SWCNT-Pc 3D) and its copper complex (Cu-SWCNT-Pc 3D). The structural characterization and electrochemical sensor features of the Cu-SWCNT-Pc hybrid towards to physostigmine pesticide were performed. A fast, direct and suitable determination method for physostigmine detection was offered. The designed sensor, Cu-SWCNT-Pc 3D/GCE (glassy carbon electrode) shows sensitivity ca 1.8, 4.3 and 2.8 times more than that of SWCNT/GCE, SWCNT-Pc-noncovalent/GCE and SWCNT-Pc 3D/GCE in terms of peak heights while bare and Pc/GCE had almost no voltammetric response to 2 µM physostigmine in PBS at a pH of 7.0. The limit of detection and quantification of physostigmine determination with Cu-SWCNT-Pc 3D/GCE were found to be 53 and 177 nM in the range of 0.1-4.8 µM, respectively. This study demonstrated that the modification of the GCE with Cu-SWCNT-Pc 3D as an electrochemical sensor was acted as catalytic role toward physostigmine presence of other interfering pesticides as high sensitivity and selectivity. The electrochemical determination of physostigmine in real samples was performed under the optimized conditions, also accuracy of the electrochemical determination method was evaluated with HPLC as a standard determination method.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Praguicidas , Cobre , Eletrodos , Indóis , Isoindóis , Limite de Detecção , Fisostigmina , Zinco
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119250, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33316650

RESUMO

An anthracene-based fluorescence (FL) system was synthesized via a general synthetic procedure. Fourier transform infrared spectroscopy (FTIR), MALDI-MS, and nuclear magnetic resonance spectroscopy (13C and 1H NMR) were carried out to characterize the multi-anthracene containing probe. The photophysical properties of the probe were illustrated via 3D-FL analysis and excitation-emission matrix (EEM) measurements. Density-functional theory (DFT) was applied to optimize the structure of the prepared probe and investigate its molecular interactions with Fe3+. The FL proficiency of the probe was appraised by spectroscopic measurements like Ultraviolet-Visible (UV-Vis) and FL spectroscopies. The simple and highly sensitive probe was able to diagnose ferric ions' low concentrations and detection limit reached upto 0.223 µM with linear working range between 0.22 and 92.00 µM for Fe3+ ions. The efficacy of this fluorescent probe was confirmed by testing for iron determination in environmental samples. Various fluorophores or ionophores could be applied for achieving novel probes by the proposed procedures and for diagnosing diverse metal ions.

12.
Food Chem Toxicol ; 146: 111847, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33160013

RESUMO

Cadmium is one of the most toxic metal that accumulates in the human body via food chain, industrial/agricultural activites. It also has negative effects in organs such as the brain, liver and central nervous system. Therefore, International Agency for Research on Cancer is classified cadmium as "carcinogenic to humans" (group 1). In this work, novel pyrene modified nanocrystalline cellulose (NP-1) was designed as a fluorescence sensor for selective determination of Cd2+ in food and soil samples. FTIR, UV-Vis, SEM, TEM and TGA were used for structural, morphological characterizations and thermal properties of NP-1. The experimental conditions such as selectivity, pH, sensor concentration, photostability, time and interaction mechanism were examined and optimized. The LOD was determined as 0.09 µM (10.70 µg/L) which was lower than WHO's permissible limit of cadmium in plant with 0.10-60.00 µM linear working range. Validation of the present method was performed by spike/recovery test and ICP-MS, then fluorescence determination of Cd2+ in food and soil samples was succesfully applied. The results indicated that the proposed method based on "turn-on" fluorescence of NP-1 was a simple, sensitive and reliable for rapid determination of Cd2+ in real samples with high applicability and stability.


Assuntos
Cádmio/toxicidade , Celulose/química , Contaminação de Alimentos/análise , Nanopartículas/química , Pirenos/química , Espectrometria de Fluorescência/métodos , Cádmio/administração & dosagem , Solo/química , Poluentes do Solo/química , Poluentes do Solo/toxicidade
13.
Turk J Chem ; 44(1): 31-47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488141

RESUMO

In this study, a series of cyclotriphosphazene derivatives containing a Schiff base (3a-3d) were synthesized by the reactions of hexachlorocyclotriphosphazene (1) with bis-aryl Schiff bases ( 2a - 2d ) having different terminal groups (H, F, Cl, and Br). The products ( 3a - 3d ) were characterized by elemental and mass analyses, FT-IR, and 1 H, 13 C, and 31 P NMR spectroscopies. Furthermore, the structure of compound 3a was also determined by X-ray crystallography. The thermal behaviors and the spectral properties of the new cyclotriphosphazene compounds ( 3a - 3d ) were investigated and the results were compared in the series.

14.
Turk J Chem ; 44(1): 48-63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488142

RESUMO

Phenoxy- and naphthoxy-substituted bisphenol-bridged cyclic phosphazenes were synthesized in 2 steps and their thermal, photophysical, and electrochemical properties were investigated. The structures of the cyclic phosphazene compounds were determined by ESI-MS mass spectrometry and 1 H, 13 C, and 31 P NMR spectroscopies. The photophysical studies of phenoxy- and naphthoxy-substituted bridged cyclophosphazenes were investigated by means of absorption and fluorescence spectroscopies in different solvents. Thermal and electrochemical properties of the target compounds were also studied. Furthermore, the excimer emissions through intramolecular interactions in solution and in solid state were investigated by fluorescence spectroscopy and the theoretical calculations were performed in detail using DFT.

15.
J Fluoresc ; 29(5): 1143-1152, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31407124

RESUMO

In the present work, novel water-soluble cyclotriphosphazene derivatives (3b and 4b) were synthesized by 'click' reactions between cyclotriphosphazene derivative with hydrophilic glycol side groups (2) and Bodipy's (3a and 4a). All newly synthesized compounds (2, 3b and 4b) were characterized by fourier-transform infrared (FTIR), mass and NMR spectroscopy techniques and elemental analysis (EA). The photophysical properties of Bodipy substituted novel cyclotriphosphazenes (3a and 4a) were examined via UV-Vis absorption and fluorescence emission spectroscopy inside water and many organic solvents such as acetone, tetrahydrofuran, dichloromethane, dimethyl sulfoxide, etc., and the results were compared with the each other. Graphical Abstract.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 220: 117115, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31141770

RESUMO

Novel fluorescent anthracene-decorated cyclotri- and cyclotetraphosphazenes (5 and 6) are designed and synthesized, and their chemosensor behaviors against nitroaromatic compounds are examined by UV/Vis and fluorescence spectroscopies for addressing the sensors with cyclophosphazenes for 2,4,6-trinitrotoluene detection. The fluorescence intensities of (5 and 6) are found to be selectively quenched by only 2,4,6-trinitrotoluene through the non-covalent π⋯π stacking interactions between anthracene-substituted cyclophosphazenes and 2,4,6-trinitrotoluene. In addition, cyclic voltammetry and theoretical calculation of novel sensor systems are studied. The proposed fluorescent sensor systems are critical in terms of practical detection of 2,4,6-trinitrotoluene.

17.
Dalton Trans ; 46(28): 9140-9156, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28671228

RESUMO

Configurational isomers (cis and trans) of imidazole- or benzimidazole-modified cyclotriphosphazenes (3a, 4a or 3b, 4b) were designed, synthesized and investigated as fluorescent probes for metal ions. The newly synthesized compounds were characterized by 1H and 31P NMR, and MALDI MS spectrometry. The configurations of geometric isomers were analyzed by X-ray crystallography and 31P NMR spectroscopy on addition of CSA. The photophysical behaviour and metal ion selectivity of the compounds were investigated by UV/vis and fluorescence spectroscopy. Among the examined 20 metal ions, the fluorescence emissions of the isomer mixtures were quenched by Cu2+ together with Fe2+, Fe3+, Zn2+ and Ni2+ ions, but each individual isomer (3a,b and 4a,b) exhibited an on-off-type fluorescence response with high selectivity towards only Cu2+ with a low limit of detection ranging from 1.27 µM to 2.04 µM. The complex stoichiometries of 3a,b and 4a,b with Cu2+ were determined as 1 : 1 (L/M) using the method of continuous variation (Job's plot) and density functional theory (DFT) calculations; moreover the complex formation of 4a with Cu2+ was unambiguously determined by X-ray crystallographic analysis that is consistent with the results obtained by the Job's plots as well as DFT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...